Lipschitz gradients for global optimization in a one-point-based partitioning scheme
نویسندگان
چکیده
A global optimization problem is studied where the objective function f(x) is a multidimensional black-box function and its gradient f ′(x) satisfies the Lipschitz condition over a hyperinterval with an unknown Lipschitz constant K. Different methods for solving this problem by using an a priori given estimate of K, its adaptive estimates, and adaptive estimates of local Lipschitz constants are known in the literature. Recently, the authors have proposed a one-dimensional algorithm working with multiple estimates of the Lipschitz constant for f ′(x) (the existence of such an algorithm was a challenge for 15 years). In this paper, a new multidimensional geometric method evolving the ideas of this one-dimensional scheme and using an efficient one-point-based partitioning strategy is proposed. Numerical experiments executed on 800 multidimensional test functions demonstrate quite a promising performance in comparison with popular DIRECT-based methods.
منابع مشابه
A partition-based global optimization algorithm
This paper is devoted to the study of partition-based deterministic algorithms for global optimization of Lipschitz-continuous functions without requiring knowledge of the Lipschitz constant. First we introduce a general scheme of a partition-based algorithm. Then, we focus on the selection strategy in such a way to exploit the information on the objective function. We propose two strategies. T...
متن کاملAssessment of the Performance of Clustering Algorithms in the Extraction of Similar Trajectories
In recent years, the tremendous and increasing growth of spatial trajectory data and the necessity of processing and extraction of useful information and meaningful patterns have led to the fact that many researchers have been attracted to the field of spatio-temporal trajectory clustering. The process and analysis of these trajectories have resulted in the extraction of useful information whic...
متن کاملOptimistic Bandit Convex Optimization
We introduce the general and powerful scheme of predicting information re-use in optimization algorithms. This allows us to devise a computationally efficient algorithm for bandit convex optimization with new state-of-the-art guarantees for both Lipschitz loss functions and loss functions with Lipschitz gradients. This is the first algorithm admitting both a polynomial time complexity and a reg...
متن کاملSimplicial Lipschitz optimization without the Lipschitz constant
In this paper we propose a new simplicial partition-based deterministic algorithm for global optimization of Lipschitz-continuous functions without requiring any knowledge of the Lipschitz constant. Our algorithm is motivated by the well-known Direct algorithm which evaluates the objective function on a set of points that tries to cover the most promising subregions of the feasible region. Almo...
متن کاملA One-Dimensional Local Tuning Algorithm for Solving GO Problems with Partially Defined Constraints
Lipschitz one-dimensional constrained global optimization (GO) problems where both the objective function and constraints can be multiextremal and non-differentiable are considered in this paper. Problems, where the constraints are verified in an a priori given order fixed by the nature of the problem are studied. Moreover, if a constraint is not satisfied at a point, then the remaining constra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Computational Applied Mathematics
دوره 236 شماره
صفحات -
تاریخ انتشار 2012